The new clock was built by researchers at JILA, a joint institution of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. Enabling pinpoint navigation in the vast expanse of space as well as searches for new particles, this clock is the latest to transcend mere timekeeping. With their increased precision, these next-generation timekeepers could reveal hidden underground mineral deposits and test fundamental theories such as general relativity with unprecedented rigor. For atomic-clock architects, it’s not just about building a better clock; it’s about unravelling the secrets of the universe and paving the way for technologies that will shape our world for generations to come. The worldwide scientific community is considering redefining the second, the international unit of time, based on these next-generation optical atomic clocks. Existing-generation atomic clocks shine microwaves on atoms to measure the second. This new wave of clocks illuminates atoms with visible light waves, which have a much higher frequency, to count out the second much more precisely. Compared with current microwave clocks, optical clocks are expected to deliver much higher accuracy for international timekeeping – potentially losing only one second every 30 billion years.
But before these atomic clocks can perform with such high accuracy, they need to have very high precision; in other words, they must be able to measure extremely tiny fractions of a second. Achieving high precision and high accuracy could have vast implications. The new JILA clock uses a web of light known as an “optical lattice” to trap and measure tens of thousands of individual atoms simultaneously. Having such a large ensemble provides a huge advantage in precision. The more atoms measured, the more data the clock has for yielding a precise measurement of the second. Read the full article in the October edition of EngineerIT